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Abstract  

Let G be a simple molecular graph with vertex and edge sets V(G) and E(G), respectively. As usual, the distance 

between the vertices u and v of G is denoted by dG(u,v) (or d(u,v) for short) and it is defined as the number of edges 

in a minimal path connecting vertices u and v. Topological indices are numerical parameters of a graph which 

characterize its topology.  The first and second Zagreb indices of a graph G are defined as 

M1(G)=

 e uv E G 

 (dv+dv)and  M2(G)=

 e uv E G 

 (dv×dv)where du is the degree of the vertex u and dv is defined 

analogously.  In 2013, G.H. Shirdel, H. RezaPour and A.M. Sayadi [4] introduced a new distance-based of Zagreb 

indices named “Hyper-Zagreb index” as HM(G)=

 e uv E G 

  (dv+dv)
2
. In this, we determine exact formulas of the 

Hyper-Zagreb index of the TUSC4C8(S) Nanotubes.  Copyright © IJEATR, all rights reserved.  
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Introduction 

Let G be a simple molecular graph with vertex and edge sets V(G) and E(G), respectively. As usual, the distance 

between the vertices u and v of G is denoted by dG(u,v) (or d(u,v) for short) and it is defined as the number of edges 

in a minimal path connecting vertices u and v [1, 2]. 

 

The first and second Zagreb indices of a graph G are defined as: [3]. 

M1(G)=

 e uv E G 

 (dv+dv) 

M2(G)=

 e uv E G 

 (dv×dv) 

where du is the degree of the vertex u and dv is defined analogously.  

In 2013, G.H. Shirdel, H. RezaPour and A.M. Sayadi [4] introduced a new distance-based of Zagreb indices named 

“Hyper-Zagreb index” as  

HM(G)=

 e uv E G 

  (dv+dv)
2
. 

The mathematical properties of these topological indices can be found in some recent papers. We encourage the 

reader to consult [5-34] for historical background, computational techniques and mathematical properties of Zagreb 

indices. 

In this paper our notation is standard and taken mainly from the standard book of graph theory. 

In this paper, we use definition of the Hyper-Zagreb index HM and compute exact formulae of this index for a family 

of Nanostructures and Molecular graphs with structure consist of cycles C4 and C8, that named ”TUSC4C8(S) 

Nanotubes”. 

Results and Discussion 

The aim of this section Hyper-Zagreb HM(G) index of the TUSC4C8(S) Nanotubes are computed. M.V. Diudea 

denoted the number of Octagons C8 in the first row of G by m and the number of Octagons C8 in the first column of 

G by n, and he denoted TUSC4C8(S) Nanotubes by G=TUC4C8[m,n] (m,nℕ). Reader can see the 3-Dimensional 

and 2-Dimensional lattices of G=TUC4C8[m,n] in Figure 1 and for historical background see references [35-49]. 

 

Theorem 1. [48] Let G be the TUSC4C8(S) Nanotubes. Then the First and Second Zagreb indices of G are equal to  

M1(TUSC4C8(S))=72mn+16m 

M2(TUSC4C8(S))=108mn+14m. 

Theorem 2. m,nℕ, let G be the TUC4C8[m,n] Nanotubes. Then the Hyper-Zagreb index of G is equal to 
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HM(TUC4C8[m,n])=12m(36n+5) 

 

 

Figure 1. -Dimensional and 2-Dimensional lattices of the TUSC4C8(S) Nanotubes [43-48]. 

 

Proof of Theorem 2. m,nℕ, consider the TUC4C8[m,n] Nanotubes with 8mn+4m vertices/atoms and 12mn+4m 

edges\bonds [43-48]. By according to Figure 1, one can see that the degree of a vertex/atom of all Nanotubes is 

equal to 1 or 2 or 3 and there are two partitions of vertex/atom set V(TUC4C8[m,n]) are equal to 

 

V2={vV(TUC4C8[m,n])| dv=2}→|V2|=2m+2m 

 V3={vV(TUC4C8[m,n])| dv=3}→|V3|=8mn 

Also, there are |E(TUC4C8[m,n])|=½(2(4m)+4(8mn))=12mn+4m edges\bonds in this Nanotubes. From the structure 

of TUC4C8[m,n] in Figure 1, we see that there are three partitions of edge\bond set E(TUC4C8[m,n]) with their size are 

as follows:  

 

E{2,2}={e=uvE(TUC4C8[m,n])| du=dv=2} → | E4|=e4=½|V2|=2m 

E{2,3}={e=uvE(TUC4C8[m,n])| du=3 &dv=2} → | E5|=e5=|V2|=4m 

E{3,3}={e=uvE(TUC4C8[m,n]])| du=dv=3} → | E6|=e6=12mn-2m 

 



International Journal of Engineering and Technology Research                                                                             

Vol. 3, No. 1, February 2015, pp. 1 - 6, ISSN: 2327- 0349 (Online)                                                                       

Available online at www.ijeatr.org 

4 

 

In Figure 1, we marked all members of these edgs partitions of TUC4C8[m,n] (E{2,2}, E{2,3} and E{3,3} ) br yellow, red 

and black colors, respectively. 

 

We now compute the Hyper-Zagreb index of TUC4C8[m,n] Nanotubes m,nℕ.  

HM(TUC4C8[m,n])=

  4 8 ,TUCe u nv CE m 

 (dv+dv)
2
  

=

2, }2{uv E

 (dv+dv)
2
+

2, }3{
uv E

 (dv+dv)
2
+

{3 },3
uv E

 (dv+dv)
2
 

=  
26

4 ii
e i


 =e4×(4)

2
+ e5×(5)

2
+ e6×(6)

2 

=(2m)(4)
2
+ (4m)(5)

2
+ (12mn-2m)(6)

2 

Thus the Hyper-Zagreb index HM(TUC4C8[m,n])=12m(36n+5) 

 

And this completed the proof of Theorem 2. ■ 

Conclusion  

In this paper, I was counting new Zagreb topological index for a family of Carbon Nanotubes namely: TUSC4C8(S) 

Nanotubes. The Hyper-Zagreb index was introduced recently by G.H. Shirdel, H. RezaPour and A.M. Sayadi in 

2013. 
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